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Abstract—A generative model for the creation of realistic
historical bus-level load data for transmission grid models is
presented. A data-driven approach based on principal component
analysis is used to learn the spatio-temporal correlation between
the loads in a system and build a generative model. Given a
system topology and a set of base case loads, individual, realistic
time-series data for each load can be generated. This technique is
demonstrated by learning from a large proprietary dataset and
generating historical data for the 2383-bus Polish test case.

Index Terms—synthetic, historical, time-series data, generative
models, spatio-temporal correlation, singular value decomposi-
tion, principal component analysis.

I. INTRODUCTION

Synthetic grid models are an indispensable tool for power
system researchers and engineers. Recently, projects like
ARPA-E’s GRID DATA [1] have tried to address the lack
of publicly available large scale models by either publishing
anonymized real data or creating synthetic but realistic sys-
tems. All public models must not contain critical electrical
infrastructure information (CEII) while including basic data
such as system topology, branch parameters, and generators
and load characteristics. These details often only represent
one operating case of the system and while they are important
for many types of power system studies (powerflow, stabil-
ity, fault analysis, etc), the usefulness of synthetic grids is
greatly improved whenever historical load data is available.
Knowing how each load varies over a day, week, or month
not only benefits the aforementioned studies by providing
different operating cases but it is also crucial for studies such
as multi-temporal unit commitment and economic dispatch,
transmission expansion planning, and long term reliability. In
addition to these more traditional applications, historical data
will also prove increasingly valuable in the emerging field of
machine learning applied to power systems.

Currently, only a few of the grid models publicly available
to researchers include historical load curves. For these models,
the most common approach is to provide time-series data for
the system demand at a net or zonal level and calculate the
bus loads at each time step as a fixed fraction of the aggregate
load. This method is simple to implement since many utilities
and system operators publish historical net load information
for their systems, often over multiple years [2] [3]. One of
the most widely used system models which was developed
following this approach is the IEEE RTS-96 case described in

[4]. The drawback is that because a fixed load ratio is used
for every bus, the variability in behavior that exists between
different types of loads at different times of the day or week
is not captured; having each load follow the same profile over
time is not realistic. An alternative method consists in creating
load data as a combination of prototypical load models at a bus
level. This technique provides an overall more realistic dataset
by creating individual profiles for each load, but it requires
detailed geographical and/or demographical information to
determine the load composition at each bus. For example,
in [5], historical load data for the synthetic Texas model
[6] is created starting from several typical load curves and
combining them according to load types and actual population
data of the state of Texas.

In this work, we develop an automatic, data-driven tech-
nique to generate bus-level historical load data for any given
transmission-level grid model. The goal is to create a gener-
ative model which takes as only inputs the system topology
and a set of base case loads and returns individual time-series
load data for every bus in the system for an arbitrary period
of time. To generate this synthetic data we need to first learn
the spatio-temporal correlation which exists between the loads
in a system. In our work, we introduce a technique based on
principal component analysis (PCA) to model the temporal
behavior of loads, and topology-based factors to model the
spatial correlation between loads. The features learned from
the real data are then used to generate realistic, individual
temporal profiles for the loads of a new grid model. Examples
of the application of PCA to the study of electrical loads can
be found in load forecasting applications [7]. In [8]–[10], the
authors describe the use of PCA for the processing of the data
used in long and short-term forecasting models for a system’s
net load. Our approach differs in that we use PCA to extract
temporal profiles from bus-level time-series data rather than
identify the correlation between the variables governing the
system net load.

We present a description of the real dataset on which our
learning algorithm is tested in Section II. The details regarding
the temporal and spatial characteristics of the data and the
associated generative model are described in Sections III and
IV, respectively. Finally, Section V presents a validation of
our results to show that the generated data follows realistic
spatio-temporal behaviors and that it represents feasible AC
optimal power flow (ACOPF) test cases.



Fig. 1. Magnitude of the singular values.

II. DATASET DESCRIPTION

The real data used in this work is proprietary and was
provided by a large American independent system operator.

Our proposed technique requires two pieces of data: the bus-
level historical load values and the topology of the system. The
load data can be represented as a matrix P ∈ Rn×t, where n is
the number of load buses in the system, and t is the number of
time samples. The proprietary dataset contains more than 3500
loads, each sampled at hourly intervals for 167 consecutive
hours (which is one hour short of a full week). The topology
of the system can be represented as an undirected graph G =
(V, E), where V is the set of all buses and E is the set of
branches.

III. TEMPORAL CORRELATION

A. Principal component analysis

At a transmission level, the loads represent aggregates of
residential, commercial, and industrial entities. Based on the
assumption that the loads within each type behave similarly
(especially residential and commercial), in a power system we
can expect to observe common profiles among all loads. An ef-
fective way to identify and extract patterns from a dataset is by
using PCA via singular value decomposition (SVD). The load
matrix P can be factorized using SVD as P = UΣV T , where
U ∈ Rn×n and V ∈ Rt×t are unitary matrices and Σ ∈ Rn×t is
an upper diagonal matrix. This factorization is able to extract
and rank the common basis which, via linear combination,
can reconstruct each load profile. In particular, the rows of
V T , which are vectors of size 1× t, correspond to archetypal
temporal profiles and they constitute the principal components.
Each diagonal element of Σ, called a singular value, represents
a scale factor which multiplies each corresponding principal
component. Because the singular values are sorted from largest
to smallest, they give an indication on the relative importance
of each temporal profile contained in the V matrix. Fig. 1
shows the singular values obtained from the factorization of
P , and it is clear that the first value is much larger than
the following ones. Thus, the temporal profile corresponding
to the first principal component, shown in Fig. 2, is the
most dominant in determining the behavior of the loads. This
profile shows the simplest and most common behavior: the
load increases during the day, reaches a peak around noon

Fig. 2. Temporal profile corresponding to the largest singular value. Each
hour multiple of 24 indicates midnight of the corresponding day.

Fig. 3. Root mean squared error as a function of the number of features used
to approximate the real loads.

and decreases in the evening. Moreover, considering that this
data starts on a Sunday, we can see how the weekend peaks
are lower than those of weekdays. The load profile at each
individual bus is obtained as a linear combination of the
principal components (columns of V ) scaled by the singular
values and multiplied by the corresponding coefficients in each
row of U . These coefficients determine the composition of any
given bus in terms of the archetypal profiles constituted by the
principal components.

Fig. 4. Load trace across one week for an example substation. Also shown
is the approximation based on the first 5 largest features.



Fig. 5. Empirical and estimated probability density functions for the first
feature (left) and the second feature (right) of the SVD load model.

B. Feature selection

As Fig. 1 shows, the first few rows of V T have a signifi-
cantly higher weight compared to the remaining ones, meaning
that the original load matrix P can be approximated with
good accuracy using only a subset of the basis vectors, or
principal components. To demonstrate this fact, an approx-
imation P̂ of the original load matrix can be computed as
P̂ = U(:, 1 : f)Σ(1 : f :, 1 : f)V T (1 : f, :), where 1 ≤ f ≤ t
is the number of temporal profiles with the largest singular
values.1 The average root mean squared error (RMSE) as a
function of the number of features used is shown in Fig. 3
and it allows for two observations. First, as one would expect,
increasing the number of basis leads to a progressively better
approximation which reaches an error of zero for f = t.
Second, the error decreases sharply and almost linearly until
f = 5, and then it slowly decays to zero. This means that the
first five features can capture the main behavior of the load and
they are sufficient to generate realistic synthetic load profiles.
Fig. 4 is an example showing a real load and its approximation
using a limited number of temporal profiles (notice that the
load values have been normalized for anonymity reasons). It
can be seen that the behavior of the load is captured very
accurately while the small magnitude variability is smoothened
out; this drawback is addressed by adding random noise, as
explained in the next section.

C. Temporal generative model

Having identified some typical patterns, a new load profile
can be created by generating a vector of coefficients and
multiplying it by the set of base profiles contained in V .
To compute these new coefficients we need to learn the
distribution of the coefficients in the original data (e.g. the
columns of U ). The probability distribution functions (PDFs)
are estimated using the Matlab Distribution Fitter App. Each
column of U is analyzed independently and the best PDF for
each is determined. Fig. 5 shows a histogram representation
of the empirical coefficients for the first two features and the
respective fitted PDFs as an example.

Since it was determined that the first five features will
be used to generate the new data, this fitting procedure is

1Notation: U(:, 1 : f), Σ(1 : f :, 1 : f), and V T (1 : f, :) indicate the
first f columns of U , the first f columns and rows of Σ, and first f rows of
V T respectively.

TABLE I
PROBABILITY DISTRIBTUION FUNCTIONS

Feature number PDF µ σ ν

1 log-normal −5.13 1.15 -

2 Student’s t 7.55 × 10−4 3.7 × 10−3 1.16

3 Student’s t 1.29 × 10−4 4.7 × 10−3 1.26

4 Student’s t 1.51 × 10−3 3.5 × 10−3 1.08

5 Student’s t 1.01 × 10−3 4.3 × 10−3 1.18

performed for the first five columns of U . Table I shows the
selected PDFs and their defining parameters. It is interesting
to notice that the first coefficient is best approximated by a
log-normal function, while all the successive ones follow a
Student’s t distribution.

At this point, to generate new profiles it is sufficient to
create a new coefficient matrix Unew, where each entry is
sampled from the appropriate distribution, and multiply it by
Σ ∈ Rf×f and V T ∈ Rf×t, where f is the chosen number
of basis to be used (f = 5 in our case). The remaining
uncertainty which is not captured by using a limited number
of features is approximated by adding random noise to the
profiles resulting from the above generative process. The noise
has been empirically estimated to be normally distributed, with
zero mean and σ = 0.02. The resulting generative model for
m new loads can be written as

Pnew = UnewΣV T +W (1)

where Pnew ∈ Rm×t, Unew ∈ Rm×f , Σ ∈ Rf×f , V T ∈ Rf×t,
and W ∈ Rm×t is the matrix whose entries are sampled from
N (0, σ2).

The model is tested by generating 3000 synthetic load
profiles using the first five basis of the real data, both with and
without noise. Each resulting load matrix is then decomposed
and approximated via SVD using an increasing number of
features in the same way as done on the original data in
Section III-B. The average root mean squared error of the
synthetic data with and without noise is shown in Fig. 6. We
can see that in the absence of noise, as one would expect,
the approximation error reaches zero when five features are
used to reconstruct the data. When noise is included, the error
follows a similar curve to that of the original data, shown in
Fig. 3. Thus, we can confirm that the generative model is able
to capture both the predominant, long-term load behaviors as
well as the short-term, high variability and randomness of the
data. An example of load profile generated using the model in
(1) is shown in Fig. 7.

IV. SPATIAL CORRELATION

The profiles resulting from (1) are generated independently
of each other, which, in general, is not a valid assumption
about the loads in a power system. Realistically, loads that are
geographically close should show some degree of correlation
in their temporal behaviors. This is true because of two factors:



Fig. 6. Root mean squared error as a function of the number of features
used to approximate synthetic data generated with and without the addition
of noise.

Fig. 7. Example load trace across one week generated using the model
described by (1).

(i) nearby loads are likely to be of the same type (residential,
commercial, industrial, etc..), and (ii) geography-dependent
factors (such as weather conditions) will affect neighboring
loads in similar ways. For this reason, it is important for
any generative model to take into account the spatio-temporal
correlation between loads that can be learned from a real
dataset.

Let us define bi = {bi,1, bi,2, ..., bi,t} as the load vector for
bus i from time 1 to t; the correlation coefficient ri,j between
the load vectors of buses i and j is:

ri,j =

∑t
k=1(bi,k − bi)(bj,k − bj)∑t

k=1(bi,k − bi)2
∑t

k=1(bj,k − bj)2
(2)

where b indicates the sample mean. To understand the spatial
characteristics of the original dataset, the correlation coeffi-
cient between buses is computed for every combination (i, j)
with 1 ≤ i ≤ m and 1 ≤ j ≤ m. Furthermore, each value
ri,j is paired with the distance between the two corresponding
buses, indicated as disti,j and defined as the number of
branches along the shortest path connecting buses i and j. The
correlation coefficients are then collected as a function of their
associated distance and the following metrics are computed:
mean, standard deviation, and 25th, 50th, and 75th percentiles.
This process allows us to understand at a general level how the
similarity between buses varies as a function of their relative
distance. Fig. 8(a) shows the statistics computed for the real
loads dataset. We can see that, on average, as the distance
between two buses increases the correlation slowly decreases,

confirming the previous hypothesis that some spatial correla-
tion exists.

To capture this behavior, the individual coefficients of
matrix Unew from the model in (1) must be modified to take
into account the values of the neighboring buses. To do so, the
coefficients are first generated by randomly drawing from the
estimated distributions as described in Section III-C. Then,
each row of Unew is modified by adding to the coefficients
vector of each bus a linear combination of the randomly
generated vectors of the neighboring buses. Simulations have
shown that the best results are obtained when each bus
is modified by taking into account its neighbors within a
maximum distance of 3. Moreover, the scaling factor that
multiplies the coefficients of the neighbors is defined as a
function of the distance, such that the greater the distance
between two buses, the smaller the scaling factor. Formally,
the model is rewritten as

Pnew = (DUnew)ΣV T +W (3)

where D ∈ Rm×m, and each entry is computed as

di,j =


1, if i = j

e−2disti,j , if disti,j ≤ 3 and i 6= j

0, otherwise.
(4)

V. TESTING OF THE GENERATIVE MODEL ON THE POLISH
TEST CASE

We test our proposed generative model by creating load
profiles for the publicly available grid model for the country
of Poland [11]. This test case, commonly referred to as the
2383 Polish case, contains 2383 buses and 1822 loads. For
each load, random coefficients are sampled from the five
distributions described in Table I and the matrix D is computed
based on the topology of the Polish system. Equation (3) is
used on this data along with the singular values and principal
components from Sections III-A and III-B respectively.

A. Spatial correlation

The spatial characteristics of the generated data are shown
in Fig. 8. Plot (b) shows the statistics of the correlation
coefficients as a function of the distance between buses for the
synthetic Polish load data generated using (3). Plot (c) shows
the same metrics for synthetic data resulting from (1), which
does not take into consideration the spatial correlation between
loads. It is clear how this latter graph greatly differs from that
of the real data, while the data generated considering the spa-
tial characteristics of the loads closely matches the behaviors
of real loads. These results prove that the weight matrix D
with exponential coefficients in (4) closely approximates the
correlation between load profiles observed in real world data.

B. Loads scaling

The last step in creating realistic historical load data consists
in scaling the profiles obtained from (3) to the values of the
base case loads. This can be done by scalar multiplication
of Pnew by the column vector S ∈ Rm. The entries of this



Fig. 8. Statistics of the correlation coefficients between load profiles as a function of the distance between buses, for the original data (left) and synthetic
data generated considering the spatial correlation (center) and without considering it (right).

scaling vector can be determined in various ways, depending
on the nature of the available base case loads. For example,
si can be defined as si = Pbase,i/f(Pnew,i), where f(Pnew,i)
is any function of the profile i, such as average, minimum
etc. In the case of the Polish system, the loads provided in
the model represent peak hour values so we have selected the
scaling function to be f(Pnew,i) = max(Pnew,i). In this way,
the maximum load values of the synthetic historical data will
coincide with the original base case loads.

C. Power flow validation

Having demonstrated the realistic nature of the generated
loads in terms of spatio-temporal characteristics, it is important
to verify that this data actually represents feasible cases from a
power system perspective. To this end, ACOPF is run on every
hour of the synthetic historical data to check for convergence.
The results of this study show that all the 167 synthetic
cases lead to converging solutions with bus voltages within
the limits and moderate levels of congestion. This confirms
that the generated loads can be supplied without exceeding
transmission capacity, while leading to valid operating cases.

VI. CONCLUSION

We have presented a method to generate realistic historical
load data for any grid model starting from a real dataset. The
learning algorithm based on principal component analysis has
been demonstrated to extract typical temporal patterns which
can be linearly combined to generate new time-series data.
The final generative model includes weighting factors which
guarantee that the spatial characteristics that were observed in
the real data are maintained in the synthetic data. Finally, we
have verified that all the resulting cases represent valid power
system operating conditions.

One of the drawbacks of this generative model is the fact
that the length of the synthetic data in terms of time is limited
to the length of the real data that is available. In our case, the
data is generated at hourly interval for one consecutive week.
In our future work we intend to devise a strategy to be able
to extend the time-length of the data to multiple weeks while
capturing the monthly and seasonal changes throughout the
year. A fairly straightforward approach would be to scale the

generated weekly loads according to the changes of the net or
zonal loads, for which data is readily available as discussed
in the introduction.
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